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All-Pairs Shortest Paths (APSP) Problem

• Compute shortest path length for every pair of nodes
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Input: Graph with edge lengths
• n = (# nodes)
• m = (# edges)

Output: Distance matrix



Repeating Dijkstra’s Algorithm

• Multiple runs of single-source shortest path algorithm

– We often use Dijkstra’s algorithm

• O(mn + n log n) time and O(m + n) space

– Hereafter, we call this algorithm as n-Dijkstra algorithm
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Contribution

• Faster algorithm for APSP on sparse graphs

– 10 times or more faster (with SIMD) than n-Dijkstra
algorithm

– O(m+n) working space

– Essentially equivalent to Hilger’s centralized algorithm (given 
in 2007)

• We were not aware of this algorithm (thanks to an anonymous 
reviewer)

• Its SIMD implementation

– 2.3 – 3.7 times faster than scalar implementation

– Hilger did not give SIMD implementation

– As far as we know, first acceleration with SIMD instructions 
for sparse graph

• In contrast to many SIMD implementations for dense graphs



Inefficiency of n-Dijkstra

• n-Dijkstra algorithm does not use information on the 
shortest paths from other source nodes
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Idea

• Source nodes are close to each other

shortest path trees are similar

we can efficiently compute them at the same time!
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Our algorithm

• Multiple runs of multi-source shortest paths 
algorithm
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Dijkstra’s algorithm

• Single-source shortest path
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Extension of Dijkstra’s Algorithm

• Dijkstra’s algorithm
– Each node is associated with single 
label

– Label corresponds to distance label

– Node with minimum label is extracted 
from priority queue

• Our algorithm for multi-source case
– Each node is associated with single key 
label and distance label for each source 
node

– Node with minimum key label is 
extracted from priority queue

– Key label is set to the minimum of 
distance labels
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Algorithm for Multi-Source Shortest Path

• Multi-source shortest paths

– For case with two source nodes
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Extension for Many Source Nodes

• Easy to extend for case # source nodes is B (>2)

• There are tradeoffs
– Pros: The # extraction from priority queue may decrease by a 

factor of B
• Only one extraction from priority queue in best case, whereas B runs of 
Dijkstra’s algorithm needs B extractions from priority queue

– Cons: Each scan operation takes O(B) time

• Our experiment shows B=128 is best
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Key Selection Rule

• Any key rule outputs correct answer
– Key label should be closeness from source nodes
– Minimum key rule is the best one in our experiments
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Label-Setting/Correcting Algorithms

• Dijkstra’s algorithm is classified as label-setting 
algorithm
– Easy to analyze worst-case computation time

scanned labeled

scanned labeled

• Our algorithm is classified as label-correcting 
algorithm
– Difficult to analyze worst-case computation time



Time Complexity

• Our algorithm terminates in finite time

• No theoretical time bound were given for

– Minimum key rule

– Average key rule

– Maximum key rule

• Hilger gave worst-case running time for 
another key rule (minimum tentative key)

– O(B (m+n log n)) time
• The same as B runs of Dijkstra’s algorithm

– However slower than minimum key rule (from 
experiments by Hilger)



SIMD implementation

• Each scan operation can be easily SIMDized
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Our algorithm

• Multiple runs of multi-source shortest path 
algorithm
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Graph Partitioning

• Repeating following procedure

– Pick up a node and traverse nearby nodes

• BFS is the best (among BFS, DFS, and kNN traverses)

• Times for graph partitioning are negligible
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Experiment: Single-Thread

• Our algorithm clearly outperforms n-Dijkstra algorithm

• SIMD implementation accelerates scalar version 2.3 – 3.7 times
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Experiment: Single-Thread (cont.)

• The acceleration is due to the decrease of # operation on 
priority queue
– In best case, this number is decreased by a factor of B

We used B = 128, BFS partitioning, and minimum key rule
Machine: Quad Core Xeon 3.16 GHz on Windows Server 2003
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Experiment: Multiple-Thread

• Parallel speedup with multi-thread 
implementation
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Improving Initializations

• Hilger suggested using better initializations 
yields 1 – 3 times faster running time
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Many-to-Many Shortest Paths

• It is trivial to extend our algorithm for many-
to-many shortest paths problem
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Summary

• Results

– We give fast algorithm for APSP on sparse graph 
and its SIMD implementation

– First SIMD acceleration for sparse graph

• Future work

– Thorough investigations of our algorithm for the 
many-to-many shortest paths problem


