
A Multi-Source Label-Correcting Algorithm
for the All-Pairs Shortest Paths Problem

Hiroki Yanagisawa

(IBM Research – Tokyo)

All-Pairs Shortest Paths (APSP) Problem

• Compute shortest path length for every pair of nodes

B

C
E

D

5

2

3

4

3

2

A

2

0

5

3

5

D ECBA

7520A

0357E

2535D

3045C

5402B
f
r
o
m

to

Input: Graph with edge lengths
• n = (# nodes)
• m = (# edges)

Output: Distance matrix

Repeating Dijkstra’s Algorithm

• Multiple runs of single-source shortest path algorithm

– We often use Dijkstra’s algorithm

• O(mn + n log n) time and O(m + n) space

– Hereafter, we call this algorithm as n-Dijkstra algorithm

D ECBA

A

E

D

C

B
f
r
o
m

to

Compute for A

Compute for B

Compute for C

Compute for D

Compute for E

B

C
E

D

5

2

3

4

3

2

A

Contribution

• Faster algorithm for APSP on sparse graphs

– 10 times or more faster (with SIMD) than n-Dijkstra
algorithm

– O(m+n) working space

– Essentially equivalent to Hilger’s centralized algorithm (given
in 2007)

• We were not aware of this algorithm (thanks to an anonymous
reviewer)

• Its SIMD implementation

– 2.3 – 3.7 times faster than scalar implementation

– Hilger did not give SIMD implementation

– As far as we know, first acceleration with SIMD instructions
for sparse graph

• In contrast to many SIMD implementations for dense graphs

Inefficiency of n-Dijkstra

• n-Dijkstra algorithm does not use information on the
shortest paths from other source nodes

D ECBA

A

E

D

C

B
f
r
o
m

to

Compute for A

Compute for B

Compute for C

Compute for D

Compute for E

Independent of each otherIndependent to each other

B

C
E

D

5

2

3

4

3

2

A

shortest
path

shortest

Idea

• Source nodes are close to each other

shortest path trees are similar

we can efficiently compute them at the same time!

A

B

1
3

2

2

5

5

2

6

1

4

3

2

6

1

3

A

B

1
3

2

2

5

5

2

6

1

4

3

2

6

1

3

⇒

⇒

Our algorithm

• Multiple runs of multi-source shortest paths
algorithm

D ECBA

A

E

D

C

B
f
r
o
m

to

Compute for
A, B, and C

Compute for
D and E

B

C
E

D

5

2

3

4

3

2

A

Partition graph

Dijkstra’s algorithm

• Single-source shortest path

0

?

?
?

?

?

?

?

?

1

3

2

2

5

5

2

6

1

4

3

2

6

1

3
2

3

1

0

1

6

2 6

3
8

55

11

6
9

8

10

9

10

: in priority queue

: unvisited

Extension of Dijkstra’s Algorithm

• Dijkstra’s algorithm
– Each node is associated with single
label

– Label corresponds to distance label

– Node with minimum label is extracted
from priority queue

• Our algorithm for multi-source case
– Each node is associated with single key
label and distance label for each source
node

– Node with minimum key label is
extracted from priority queue

– Key label is set to the minimum of
distance labels

?6

6,7,…

Distance
labels

Key
label

?6

Label

Algorithm for Multi-Source Shortest Path

• Multi-source shortest paths

– For case with two source nodes

0

?

?
?

?

?

0

?

?

1

3

2

2

5

5

2

6

1

4

3

2

6

1

3
2

3

0,?

?,0

2,?

0

0

3,?

1,0

5

6,5

0

0,1
2

3,2

0

2,3

2 6

6,7

2
7

8,7

4

5,4

4

7

11,10

6
9

9,10

7

8

9,8

9

10,9

8

9

: in priority queue

: unvisited

Extension for Many Source Nodes

• Easy to extend for case # source nodes is B (>2)

• There are tradeoffs
– Pros: The # extraction from priority queue may decrease by a

factor of B
• Only one extraction from priority queue in best case, whereas B runs of
Dijkstra’s algorithm needs B extractions from priority queue

– Cons: Each scan operation takes O(B) time

• Our experiment shows B=128 is best

5

3,1,…,4

1 ?

0

0

0

…

?,?,…,?

5

3,1,…,4

1 6

0

0

0

…

8,6,…,9

scan

B

Key Selection Rule

• Any key rule outputs correct answer
– Key label should be closeness from source nodes
– Minimum key rule is the best one in our experiments

5
3,1

1 ?

?,?

5
3,1

1 6

8,6
scan

5
3,1

1 8

8,6

Maximum key rule

5
3,1

1 7

8,6

Average key rule

Minimum key rule

Label-Setting/Correcting Algorithms

• Dijkstra’s algorithm is classified as label-setting
algorithm
– Easy to analyze worst-case computation time

scanned labeled

scanned labeled

• Our algorithm is classified as label-correcting
algorithm
– Difficult to analyze worst-case computation time

Time Complexity

• Our algorithm terminates in finite time

• No theoretical time bound were given for

– Minimum key rule

– Average key rule

– Maximum key rule

• Hilger gave worst-case running time for
another key rule (minimum tentative key)

– O(B (m+n log n)) time
• The same as B runs of Dijkstra’s algorithm

– However slower than minimum key rule (from
experiments by Hilger)

SIMD implementation

• Each scan operation can be easily SIMDized

2

3,4,7,7,6,5,2,1,3,……………………………………,51

4 4,8,9,7,4,5,6,6,6,……………………………………,4

5,6,9,9,8,7,4,3,5,……………………………………,7

+2 (SIMD)

compare (SIMD)

4,6,9,7,4,5,4,3,5,……………………………………,4

Compute minimum (SIMD)

3

B labels

Our algorithm

• Multiple runs of multi-source shortest path
algorithm

D ECBA

A

E

D

C

B
f
r
o
m

to

Compute for
A, B, and C

Compute for
D and E

B

C
E

D

5

2

3

4

3

2

A

Partition graph

Graph Partitioning

• Repeating following procedure

– Pick up a node and traverse nearby nodes

• BFS is the best (among BFS, DFS, and kNN traverses)

• Times for graph partitioning are negligible

2

3

5

8

4

1

2

6

2

9

6

7

Ex. B =3

Experiment: Single-Thread

• Our algorithm clearly outperforms n-Dijkstra algorithm

• SIMD implementation accelerates scalar version 2.3 – 3.7 times

0

5

10

15

20

25

30

35

Grid16x8192 Grid256x256 HI AK VT

n-Dijkstra

Ours (scalar)

Ours (SIMD)

We used B = 128, BFS partitioning, and minimum key rule
Machine: Quad Core Xeon 3.16 GHz on Windows Server 2003

Grid
graphs Road

networks
in US

Speedup

Experiment: Single-Thread (cont.)

• The acceleration is due to the decrease of # operation on
priority queue
– In best case, this number is decreased by a factor of B

We used B = 128, BFS partitioning, and minimum key rule
Machine: Quad Core Xeon 3.16 GHz on Windows Server 2003

Best case

0

20

40

60

80

100

120

140

Grid16x8192 Grid256x256 HI AK VT

Experiment: Multiple-Thread

• Parallel speedup with multi-thread
implementation

0

1

2

3

4

1 2 3 4 1 2 3 4

VT

Grid16x8192

Grid256x256

Scalar SIMD

We used B = 128, BFS partitioning, and minimum key rule
Machine: Quad Core Xeon 3.16 GHz on Windows Server 2003

Speedup

threads

Improving Initializations

• Hilger suggested using better initializations
yields 1 – 3 times faster running time

0

?

?

?

0

1

3

2

2

5

2

1

0,?

?,0

0

?

?

?

0

1

3

2

2

5

2

1

0,1

1,0

No
initialization

No
initialization

Initialize
with

shortest
path
lengths

Initialize
with

shortest
path
lengths

Our algorithm Hilger’s algorithm

Many-to-Many Shortest Paths

• It is trivial to extend our algorithm for many-
to-many shortest paths problem

A

B

C

D

E

1
3

2

2

5

5

2

6

1

4

3

2

6

1

3

5

0

7

5

6

D ECBA

10530A

06710E

5756D

6025C

7203B
f
r
o
m

to

Summary

• Results

– We give fast algorithm for APSP on sparse graph
and its SIMD implementation

– First SIMD acceleration for sparse graph

• Future work

– Thorough investigations of our algorithm for the
many-to-many shortest paths problem

